CLUSTALG

Introduction

ClustalG is a 'general' version of the ClustalX multiple sequence alignment program used for analysis of protein and nucleotide molecules. It provides an integrated environment for reading sequence files, performing pairwise, multiple sequence and profile alignments and analysing the results. ClustalG eliminates the specifically biological features of ClustalX and recognizes an expanded alphabet for representing events or activities making it suitable for research in many branches of the social and natural sciences.

Input sequences consist of alpahabetic characters that represent events or items ordered in time or one-dimensional space. The algorithms incorporated in ClustalG calculate scores of the similarities among the input character sequences. The raw and aligned sequences are displayed in a window on the screen. A versatile coloring scheme has been incorporated allowing you to highlight features conserved across sequences in the alignment. The pull-down menus at the top of the window allow you to select all the options required for traditional multiple sequence and profile alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional activities can be highlighted.

In order to align just two sequences, it is standard practice to use dynamic programming. This guarantees a mathematically optimal alignment, given a table of scores for matches and mismatches between all amino acids or nucleotides (e.g. the PAM250 matrix or BLOSUM62 matrix) and penalties for insertions or deletions of different lengths. Attempts at generalising dynamic programming to multiple alignments are limited to small numbers of short sequences. For much more than eight or so proteins of average length, the problem is uncomputable given current computer power. Therefore, all of the methods capable of handling larger problems in practical time scales, make use of heuristics. One of the most widely used approaches to the multiple sequence alignment problem is the "progressive" approach of Feng and Doolittle. One can build up a multiple alignment progressively by a series of pairwise alignments, following the branching order in a guide tree (7). One first aligns the most closely related sequences, gradually adding in the more distant ones.

The ClustalG multiple alignment method can be divided into 4 steps :

 1. all pairs of sequences are aligned separately in order to calculate a distance matrix containing the divergence of each pair of sequences

 2. a guide tree is calculated from the distance matrix, describing the approximate groupings of the sequences by similarity
 3. the sequences are progressively aligned according to the branching order in the guide tree.

 4. a final neighbor-joining tree may be constructed based on the multiple alignment

Sequence Input

The raw unaligned sequences or aligned sequences (profiles) are input using the FILE menu. All the sequences to be aligned should be in a single file, one after another. Seven different sequence input formats are recognised automatically and read by the program: Pearson / Fasta, CLUSTAL, NBRF/PIR, EMBL/Swiss Prot, GCG/MSF, GCG9 RSF and GDE flat file. Of these, the Pearson format is easiest to create and will be used throughout this example. Alignment output may be requested in standard CLUSTAL format (self-explanatory blocked alignments) or in formats compatible with the GDE, PHYLIP or GCG packages. The program offers the user the ability to calculate Neighbour-Joining trees from existing alignments. The trees may be output in the "New Hampshire" format that is compatible with a number of tree-drawing packages such as DrawTree, TreeView.

Example sequence input file :

>One

ABCDEF

>Two

ADEGH

>Three

BBDBFG

>Four

DEFFFG

>Five

CCDDE

>Six

AABDE

User defined parameters
Score Matrix

The scoring table defines the similarities between the characters used in the sequences. By default, an identity matrix is used, in which a match between two identical characters scores 10 and all mismatches score 0. However, ClustalG can also read character similarity scores in one of two different formats.

Example Matrix :

A
B
C
D
E
F
G
H

A
10
0
7
0
0
-1
-1
0

B
0
10
0
0
0
0
0
0

C
7
0
10
0
0
0
0
0

D
0
0
0
10
0
5
0
0

E
0
0
0
0
10
0
0
0

F
-1
0
0
5
0
10
0
0

G
-1
0
0
0
0
0
10
0

H
0
0
0
0
0
0
0
10

In Parsing Format :

$matrix

$
10

[A:C]
 7

[D:F]
 5

[A:F]
-1

[A:G]
-1

?
 0
ClustalG calculates the mean score for a mismatch, to be used in selecting appropriate gap opening and extension penalties (see below). The mean mismatch score corresponds to the mean off-diagonal score in the matrix representation above. For this example, the mean mismatch score is 0.35.

Penalties for opening and extending a gap

Initially, two gap penalties are defined by the user: a gap opening penalty (GOP) which gives the cost of opening a new gap of any length and a gap extension penalty (GEP) which gives the cost of every item in a gap. ClustalG then automatically attempts to choose appropriate gap penalties for each sequence alignment, depending on the score matrix and the lengths of the sequences.

In order to select gap penalties compatible with the chosen score matrix, the mean score for two mismatched residues (ie. off-diagonal values in the matrix) is used as a scaling factor for the GOP. Also, the alignment scores for both true and false sequence alignments grow with the length of the sequences. The natural logarithm of the length of the shorter sequence is used to increase the GOP with sequence length.

In the example, User GOP = 1.0, User GEP 0.1

With these two modifications, the final gap penalties used by the program are :

If mean mismatch score is negative :

GOP = 2*mean mismatch score*(User_GOP+logn(MIN(Li,Lj))

Otherwise :

GOP = 2*(User_GOP+logn(MIN(Li,Lj))

GEP = User_GEP = 0.1

Where GOP, GEP are the gap opening and extension penalties set by the user

Li,Lj are the lengths of the two sequences to be aligned
In the example, the matrix mismatch score is 0.35,

therefore, GOP = 2* (User_GOP+logn(MIN(Li,Lj))) = 2*(1.0+1.6) = 5.2
Step 1 - align each pair of sequences

ClustalG uses a dynamic programming algorithm to calculate the maximum similarity score between two sequences or profiles. The algorithm can be visualised with a path graph (figure 1). The goal is to maximise the similarity score for the alignment that ends at each vertex. At this pairwise alignment stage, a local dynamic programming algorithm (Smith-Waterman) is used to identify the most similar region shared between two sequences. The similarity score between a pair of sequences is defined as the sum of the similarity scores for all aligned pairs of characters, minus a gap penalty for each gap introduced in either of the sequences. The recursive dynamic programming algorithm can be summarised by the following formula:

[image: image11..pict]
where Hi,j is the score for the alignment that ends at vertex i,j

Si,j is the score for aligning the two residues at vertex i,j

Figure 1 Alignment path for sequences one and two.

A

B

C

D

E

F

A
10

0

7

0

0

-1

D
0
(
10
(
4.8
(
17
(
11.8
(
11.7

E
0

(
4.8
(
10

(
11.8
(
27
(
21.8

G
-1

(
4.7

(
4.8

(
11.7

(
21.8
(
27

H
0

(
4.6

(
4.7

(
11.6

(
21.7

(
21.8

The maximal score at any vertex is 27, corresponding to two different alignments:

One CDE or One CDEF

Two ADE Two ADEG
The first alignment is selected, as this leads to the highest percent identity score.

The Smith-Waterman dynamic programming alignment algorithm is repeated for all pairs of sequences. The results are summarised in the following table :

SIM=similarity score

ALEN = Alignment length

NID= Number of identical residues

SLEN=Shortest sequence length

%ID=percentage of identical residues
Sequences
Alignment
Similarity

calculation
SIM
ALEN
NID
SLEN
%ID

one

two
CDE

ADE
7+10+10
27
3
2
5
40

one

three
BCDEF

BBDBF
10+0+10+0+10
30
5
3
6
50

one

four
DEF

DEF
10+10+10
30
3
3
6
50

one

five
ABCDE

CCDDE
7+0+0+10+10
27
5
2
5
40

one

six
ABCDE

AB-DE
10+10+10+10

-(5.2+0.1)
34
5
4
5
80

two

three
DE-G

DBFG
10+0+10

-(5.2+0.1)
14
4
2
5
40

two

four
DE---G

DEFFFG
10+10+10

-(5.2+3*0.1)
24
4
3
5
60

two

five
AD-E

CDDE
7+10+10

-(5.2+0.1)
21
4
2
5
40

two

six
A-DE

ABDE
10+10+10

-(5.2+0.1)
24
4
3
5
60

Three

four
DBFG

FFFG
5+0+10+10
25
5
2
6
33

three

five
D

D
10
10
1
1
5
20

three

six
BD

BD
10+10
20
2
2
5
40

four

five
DE

DE
10+10
20
2
2
5
40

four

six
DE

DE
10+10
20
2
2
5
40

five

six
CCDDE

AABDE
7+7+0+10+10
34
5
2
5
40

Pairwise percent identity scores are calculated as the number of identical residues in the best alignment divided by the length of the shortest sequence. These scores are then converted to distances by dividing by 100 and subtracting from 1.0 to give the sequence distance matrix.

Pairwise percent identities:

one
two
three
four
five
six

one
100
40
50
50
40
80

two
40
100
40
60
40
60

three
50
40
100
33
20
40

four
50
60
33
100
40
40

five
40
40
20
40
100
40

six
80
60
40
40
40
100

Sequence Distance Matrix:

one
two
three
four
five
six

one
0
0.60
0.50
0.50
0.60
0.20

two
0.60
0
0.60
0.40
0.60
0.40

three
0.50
0.60
0
0.67
0.80
0.60

four
0.50
0.40
0.67
0
0.60
0.60

five
0.60
0.60
0.80
0.60
0
0.60

six
0.20
0.40
0.60
0.60
0.60
0

 Step 2 - Create guide tree

The trees used to guide the final multiple alignment process are calculated from the distance matrix of step 1 using the Neighbour-Joining method. This produces unrooted trees with branch lengths proportional to the estimated divergence along each branch.

Step 1 : The first step consists of creating a 'node' joining the two most closely related sequences.

In the example, sequences One and Six have the minimum distance (=0.2)

Node 1 : Sequence: one (0.10000) joins Sequence: six (0.10000)

[image: image1.wmf]
Step 2 : The distances from the new node to the remaining sequences are recalculated, and the two closest sequences or nodes are joined together.

Node 2 : Node: 1 (0.10556) joins Sequence: three (0.34444)

[image: image6.wmf]Similarity

=

number

of

identical

matches

number

of

residues

aligned

Step 2 is repeated until all sequences are included in the tree.

Node 3 : Sequence: two (0.18542) joins Sequence: four (0.21458)

[image: image7.wmf]Distance

=

1

-

Similarity

Node 4 (Last cycle, trichotomy) :

 Node: 2 (0.06458) joins Node: 3 (0.03958) joins Sequence: five (0.36042)

[image: image8..pict]
The tree is written to a file in the New Hampshire file format, compatible with a number of tree drawing packages (Phylip, TreeTool, NJplot etc.)

New Hampshire File Format:

(((one:0.10000,

six:0.10000)

:0.10556,

three:0.34444)

:0.06458,

(two:0.18542,

four:0.21458)

:0.03958,

five:0.36042);

Step 3: Calculate sequence weights

Sequences are weighted to correct for unequal sampling in the data set. Groups of closely related sequences receive lowered weights because they contain much duplicated information. Highly divergent sequences without any close relatives receive high weights. These weights are used in the multiple alignment stage as simple multiplication factors for scoring positions from different sequences or prealigned groups of sequences. The guide tree is first rooted; the root is placed such that the mean branch length on the left side of the root is equal to the mean branch length on the right. The weights are calculated from the branch lengths of the rooted guide tree and normalised such that the sum of the sequence weights is one.

Rooted guide tree:

[image: image9..pict]
The sequence weights are dependent upon the distance from the root of the tree but sequences which have a common branch with other sequences share the weight derived from the shared branch. For example, the sequence “four” gets a weight consisting of the length of the branch leading to it that is not shared with any other sequences (0.215) plus half the length of the branch shared with sequence “two” (0.040), plus one third of the length of the branch to the root (0.018). This sums to a total of 0.240.

Raw weight
Normalised weight

One:
0.100/1 + 0.106/2 + 0.046/3

= 0.168
0.108

Six:
0.100/1 + 0.106/2 + 0.046/3

= 0.168
0.108

Three:
0.344/1 + 0.046/3

= 0.359
0.236

Two:
0.185/1 + 0.040/2 + 0.018/3

= 0.211
0.141

Four:
0.214/1 + 0.040/2 + 0.018/3

= 0.240
0.162

Five:
0.360/1 + 0.018/3

= 0.366
0.243

Step 4: build multiple alignment

The basic procedure at this stage is to use a series of pairwise alignments to align larger and larger groups of sequences, following the branching order in the guide tree. We proceed from the tips of the rooted tree towards the root. For each node in the rooted tree, the sequences of the left branch of the node are aligned with those on the right branch. Each step consists of aligning two existing alignments or sequences, using a global pairwise alignment algorithm (Needleman-Wunsch) with a score matrix and penalties for opening and extending gaps. Gaps that are present in older alignments remain fixed.

In order to align groups of sequences, each alignment is converted to a profile. The profile is a matrix, where each row represents a position in the multiple alignment, and each column represents one character from the alphabet. The profile also contains the position-specific gap opening and extension penalties.

For a group of N aligned sequences of length L, let aij be the activity in sequence i at position j.

The first profile uses the frequencies of the residues observed in the group of sequences and the scoring matrix :

[image: image2.wmf]
where D is the number of characters in the alphabet, activityc is the activity represented by the column in the profile.

[image: image3.wmf]
where wi is the weight of sequence i.

The second profile is based only on the observed residue frequencies in the group of sequences:

[image: image4.wmf]
The score for aligning a position from one alignment and one from another is then the product of the two profile columns:

[image: image5.wmf]
The scores for opening and extending gaps in the profiles are calculated as follows :

Score for opening a gap at position i in profile 1 and position j in profile 2:

GOP = GOP1(i) + GOP2(j+1)

Score for opening a gap at position j in profile 2 and position i in profile 1:

GOP = GOP1(i+1) + GOP2(j)

Score for extending a gap in profile 1, opposite position j in profile 2:

GEP = GEP2(j)

Score for extending a gap in profile 2, opposite position j in profile 1:

GEP = GEP1(j)

Alignment parameters for the example are :

Score Matrix

A
B
C
D
E
F
G
H

A
10
0
7
0
0
-1
-1
0

B
0
10
0
0
0
0
0
0

C
7
0
10
0
0
0
0
0

D
0
0
0
10
0
5
0
0

E
0
0
0
0
10
0
0
0

F
-1
0
0
5
0
10
0
0

G
-1
0
0
0
0
0
10
0

H
0
0
0
0
0
0
0
10

Calculation of gap penalties

User GOP = 1.0, User GEP = 0.05

If MIN(Li,Lj) < 100, minlen=0;

Otherwise, minlen= logn(MIN(Li,Lj)

If mean mismatch score is negative :

GOP = mean mismatch score*(User_GOP+minlen)

Otherwise :

GOP = 0.5*(User_GOP+minlen)

In the example, GOP = 0.5* (1.0+0.0) = 0.5 for L=5

GEP = User_GEP = 0.05

(End gaps are not penalised.)

Step 1 in the multiple alignment stage is to align sequence two with sequence 4.
Profile 1: two ADEGH

A
B
C
D
E
F
G
H
GOP1
GEP1

A
10
0
7
0
0
-1
-1
0
0
0

D
0
0
0
10
0
5
0
0
0.5
0.05

E
0
0
0
0
10
0
0
0
0.5
0.05

G
-1
0
0
0
0
0
10
0
0.5
0.05

H
0
0
0
0
0
0
0
10
0
0

Profile 2: four DEFFFG

A
B
C
D
E
F
G
H
GOP2
GEP2

D
0
0
0
1
0
0
0
0
0
0

E
0
0
0
0
1
0
0
0
0.5
0.05

F
0
0
0
0
0
1
0
0
0.5
0.05

F
0
0
0
0
0
1
0
0
0.5
0.05

F
0
0
0
0
0
1
0
0
0.5
0.05

G
0
0
0
0
0
0
1
0
0
0

Alignment :

two ADE---GH

four -DEFFFG-
Score = 10+10+10 – (0.5+0.5+ 3*0.05) = 28.85

(The end gaps in sequence four are not penalised)

In step 2, the alignment of sequences (two, four) is converted to a profile and aligned with sequence five.

Profile 1 is based on the alignment of sequences two, four:

two ADE---GH
four -DEFFFG-

Firstly, the weights for sequences four and five are normalized such that the total weight=1.0 :

Normalized weight for four : 0.465

Normalized weight for five : 0.535

Example profile calculations:

Profile(1,A) = 0.465* Matrix(A,A) = 0.465

Profile(1,C) = 0.465* Matrix(A,C) = 3.255

Profile(2,D) = 0.465*Matrix(D,D)+ 0.465*Matrix(D,D)=10

Profile(4,F) = 0.535*Matrix(F,F) / 2.0 = 2.67

Scores for each position are multiplied by the proportion of characters (as opposed to gaps) in the alignment at this position. (Gap characters at the ends of the sequences are not considered as gaps by default).

A
B
C
D
E
F
G
H
GOP
GEP

1
4.65
0
3.25
0
0
-0.46
-0.46
0
0
0

2
0
0
0
10
0
5
0
0
1.75
0.05

3
0
0
0
0
10
0
0
0
1.87
0.05

4
-0.26
0
0
1.33
0
2.67
0
0
0.71
0.02

5
-0.26
0
0
1.33
0
2.67
0
0
0.71
0.02

6
-0.26
0
0
1.33
0
2.67
0
0
0.71
0.02

7
-1
0
0
0
0
0
10
0
1.87
0.05

8
0
0
0
0
0
0
0
4.65
0
0

Position-specific gap opening and extension calculations:

In ClustalG, a table of gap opening and extension penalties for every position in the profile is calculated, in order to make gaps more or less likely at different positions. The gap opening penalty is reduced at positions containing gaps. Both the gap opening and extension penalties are increased at conserved positions near existing gaps. The GOP and GEP for each position in both alignments are shown in the profile tables.

Profile 2: five CCDDE

A
B
C
D
E
F
G
H
GOP
GEP

C
0
0
1
0
0
0
0
0
0
0

C
0
0
1
0
0
0
0
0
0.5
0.05

D
0
0
0
1
0
0
0
0
0.5
0.05

D
0
0
0
1
0
0
0
0
0.5
0.05

E
0
0
0
0
1
0
0
0
0
0

Alignment :

two --ADE---GH

four ---DEFFFG-

five CCDDE-----

Score = 3.25+10+10-(0.5+0.71+0.05)=21.09

In summary, we align the sequences in the following order:

Step 1:
Align Sequence: two with
two ADE---GH

Sequence: four
four -DEFFFG-
Score : 28.85

Step 2:
Align Profile: (two, four) with
two -A-DE---GH

four ---DEFFFG-

Sequence: (five)
five CCDDE-----
Score : 21.09

Step 3:
Align Sequence: (one) with
one -ABCDEF

Sequence: (six)
six AAB-DE-
Score : 38.95

Step 4: Align Profile: (one,six) with
one -ABCDEF-

six AAB-DE--

Sequence: (three)
three --BBDBFG

Score: 25.00

Step 5: Align Profile: (two,four,five) with two -A--DE---GH

four ----DEFFFG-

five CCD-DE-----

Profile: (one,six,three)
one -ABCDEF----

six AAB-DE-----

three --BBDBF--G-

 .. ##: :

Score:19.05

Divergent sequences

The most divergent sequences (most different, on average from all of the other sequences) are usually the most difficult to align correctly. It is sometimes better to delay the incorporation of these sequences until all of the more easily aligned sequences are merged first. This may give a better chance of correctly placing the gaps and matching weakly conserved positions against the rest of the sequences. A choice is offered to set a cut off (default is 40% identity or less with any other sequence) that will delay the alignment of the divergent sequences until all of the rest have been aligned.

Recalculate Pairwise distances

Finally, the pairwise distances are recalculated based on the new multiple alignment. For each pair of sequences, the similarity is defined as:

[image: image10..pict]
And the pairwise distance is:

Multiple Alignment:
two -A--DE---GH

four ----DEFFFG-

five CCD-DE-----

one -ABCDEF----

six AAB-DE-----

three --BBDBF--G-

 :: ##: :

Similarity
Distance

Two, four
3/3=1
0

Two,five
2/3=0.667
0.333

Two,one
3/3=1
0

Two,six
3/3=1
0

Two,three
2/3=0.667
0.333

Four,five
2/2=1
0

Four,one
3/3=1
0

Four,six
2/2=1
0

Four,three
3/4=0.75
0.25

Five,one
2/4=0.5
0.5

Five,six
2/5=0.4
0.6

Five,three
1/3=0.333
0667

One,six
4/4=1
0

One,three
3/5=0.6
0.4

Six,three
2/3=0.667
0.333

Distance matrix:

two
four
five
one
six
three

two
0.000
0.000
0.333
0.000
0.000
0.333

four
0.000
0.000
0.000
0.000
0.000
0.250

five
0.333
0.000
0.000
0.500
0.600
0.667

one
0.000
0.000
0.500
0.000
0.000
0.400

six
0.000
0.000
0.600
0.000
0.000
0.333

three
0.333
0.2500
0.667
0.400
0.333
0.000

Step 5 - Create final neighbor-joining tree

Multiple Alignment:
two -A--DE---GH

four ----DEFFFG-

five CCD-DE-----

one -ABCDEF----

six AAB-DE-----

three --BBDBF--G-

 :: ##: :

The neighbor-joining algorithm used is exactly the same as that described earlier for the guide tree.

Node 1 : Sequence: two (0.00000) joins Sequence: four (0.00000)

Node 2 : Node: 1 (0.17083) joins Sequence: five (0.23125)

Node 3 : Sequence: three (0.28750) joins Node: 2 (0.05625)

Node 4 : (Last cycle, trichotomy):

 Node: 2 (0.03542) joins Sequence: one (0.00208) joins Sequence: six (0.00000)

In New Hampshire file format:

((two:0.00000,

((four:0.00000,

five:0.23125)

:0.17083,

three:0.28750)

:0.05625)

:0.03542,

one:0.00208,

six:0.00000);
Comparison of trees before and after multiple alignment

Multiple Alignment:
two -A--DE---GH

four ----DEFFFG-

five CCD-DE-----

one -ABCDEF----

six AAB-DE-----

three --BBDBF--G-

 :: ##: :

Guide tree calculated from pairwise alignments:

Final neighbor-joining tree from multiple alignment:

The main difference is that sequence three has moved from the group with sequences one, six

to join the group with two, four and five. Sequence three is the most divergent sequence as it does not contain the DE 'motif' conserved in the other sequences. Sequences one and six share the AB motif, that sequence three does not have. Sequence 3 does contain the G activity present only in sequences two and four.

Step 6 : Alignment Analysis

Matrix used for alignment analysis:

$
10

[A:C]
 7

[D:F]
 5

[A:F]
-1

[A:G]
-1

[G:F]
-1

[G:H]
-1

?
 0
(The aligment and the matrix have been changed from those in the example above, in order to force some errors and to demonstrate the error detection calculations).

exceptional activities

low-scoring segments

Firstly, ClustalG allows the user to select the colors used to highlight certain activities. In this

case, a simple scheme has been used that colors all activities, regardless of the conservation at each position.

The conservation is indicated in two ways: the characters #,*,:,. above the alignment, and the conservation profile below the alignment.

Conservation profile

The conservation at each position is estimated based on a distance analysis in an N-dimensional sequence space (where N is the number of characters in the alphabet). For each column in the alignment, a consensus sequence is calculated based on the activities observed in this column. The conservation score is based on the mean distance of each sequence from the consensus position. Thus, if the column is conserved, the distance of each sequence from the consensus is zero, and the conservation score is 1. For less well conserved columns, the distances increase and the score tends towards to zero. The user can select the scoring matrix used to calculate the consensus point and the sequence distances.

Exceptional Activities

For each column in the alignment, those sequences that are found a long way from the consensus point can be highlighted in grey. The scaling factor used for the exception calculation can be adjusted by the user to select the proportion of exceptional activities displayed.

Low scoring segments

The low scoring segment calculation is based on a profile of the alignment. (see profile calculation in multiple alignment section). For each sequence, the scores for matching the sequence against the profile are summed in both forward and backward directions. The low-scoring segments (those segments that score negatively in both directions) can be highlighted in black. The user can select the scoring matrix used to calculate the profile.

one

0.05625

2

five

2

1

0.23125

0.17083

0.0

0.0

four

two

trichotomy

0.03542

six

0.0

3

two

1

� INCORPORER Equation.3 ���

� INCORPORER Equation.3 ���

0.06458

trichotomy

0.03958

five

three

0.34444

0.10000

0.10000

six

one

0.36042

3

0.21458

0.18542

four

0.28750

one

three

0.00208

0.01829

root

0.03958

five

0.36042

3

0.21458

0.18542

four

two

one

three

2

1

0.34444

0.10000

0.10000

six

0.10556

0.10556

1

0.10000

0.10000

six

one

0.04629

three

2

0.06458

trichotomy

0.03958

five

three

1

two

3

0.21458

0.18542

four

0.34444

0.10000

0.10000

six

one

2

1

0.34444

0.10000

0.10000

six

one

0.36042

3

0.21458

0.18542

four

two

0.10556

0.10556

0.00208

0.28750

three

0.0

0.0

two

five

0.17083

0.23125

0.05625

trichotomy

0.03542

0.0

four

six

3

2

1

- 19 -

_1045906212.unknown

_1045906582.unknown

_1045906664.unknown

_1045906550.unknown

_1045074523.unknown

_1045147207.unknown

_1045074485.unknown

